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Abstract. The influence of a magnetic field H on the Coulomb drag between quantum wires
is studied theoretically for low temperatures, when the electron motion along the wires is nearly
ballistic. A considerable decrease of the drag transresistance is found as a result of the suppression
of backscattering in electron-electron collisions at H - I T.

Introduction

The Coulomb drag in spatially separated low-dimensional electron systems has received
a great deal of attention and has nearly developed into a separate field; a recent review is
found in Ref. [ ]. In particular, the drag between quantum wires was studied theoretically
[I assuming scattering of the carriers, e.g., by impurities. It is however, difficult to check
experimentally these results in microstructural samples because the actual double-quantum-
wire systems [] are normally shorter than I jtm and electron transport there is eitherballistic
or mesoscopic.

Recently, Gurevich et. al. [], demonstrated the possibility of the drag effect in the
regime in which most of the electrons travel through the wire ballistically. However, a few
of the electrons experience backscattering due to the interaction with the electrons of the
other wire, and this modifies the time-averaged distribution functions in such a way that
the drag effect appears. Such a ballistic Coulomb drag (BCD) has not yet been observed
experimentally. However, further theoretical studies of the BCD are important because
they would bring new information and thereby stimulate experimental work in this new
area. In this paper we investigate the effect of a magnetic field H applied perpendicular to
the plane of the wires on the BCD. The backscattering processes, which are essential for
the drag effect to appear, are suppressed by the magnetic field because the spatial overlap
between the forward- and backward-propagating electron states decreases as the states tend
to localize near the opposite edges of each wire. For this reason, we claim that the BCD
will be suppressed and our aim is to study this suppression quantitatively.

Below we present the double-quantum-wire model and derive a general expression for
the drag transresistance PD. Then we give the numerical results for the magnetic-field
dependence of PD and a brief discussion.

1 General formalism

We use a model of a four-terminal double-quantum-wire system, similar to those investi-
gated in the "directional coupler" problem [ 1. Two closely spaced quantum wires (num-
bered I and 2) with parabolic confinement along the y direction are contacted independently
to four leads at x = -L/2 and x = L/2, where L is the length of the wires. The leads
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have potentials v1 (±L/2) = vl±, and v2 (±L/2) = V2±. Applying the bias v2- - V2+
to the leads of wire 2 (drive wire) we obtain the current I flowing through wire 2; this
current induces a voltage vI- - vI+ in wire I (drag wire). This is the typical setup for drag
measurements [ 1. We assume that the barrier between the wires is high enough to allow
the neglect of tunneling.

The wave functions k'jnk (X, y) = eikx Xjnk (Y) (n is the Landau-level number, I = 1,2,

and k is the wave vector) of electrons, confined by the potentials Uj = 80 + mQ2(y

yj)2/2 in the presence of a perpendicular magnetic field H, are given by Xjnk(Y) 7

(7r 1/ 2fj2nn!)-'/ 2 H, ((y - Yj)/ej)) exp(-(y - yj) 2 /2f2). The corresponding spectrum
8jn (k) (spin splitting is neglected) reads

8jn(k) = ej 0+ hwoj(n + 1/2) + (h 2 /2mj)(k - yj/) 2 , (1)

Here oj2 o )- + Q, w. = eH/mc is the cyclotron frequency m1j = Moj/Q2,2 f

,/-hi/mw. is the magnetic length, fý = h/mow, and Yj = [Q2yj + hwok/m]/0o2 are the
positions of the centers of the oscillators. Since we do not consider electron transitions
between the wires, we will shift the wave vectors k - yl -_ k for wire 2 and k- y2 --

k for wire 2. Then the centers of the oscillators will read Y. = yj + (hwoc/mwo)k. We also
assume that only the lowest Landau levels of both wells are populated (n = 0) and omit
the index n.

If the distribution functions fjk (x) fjk change over distances much longer than both
the electronic wavelength 7r/k and the characteristic radius of the interaction potential, we
can write the Boltzman kinetic equations as

h~k af jk W 47r Mkdjkj•yj 2
k fj ax h, q 6(8jk + 8 jk - 8jk-q - jl,kf+q)

x[,fjk(I - fj,k-q)fjfk'(I - fj',k'+q) - fj,k-q 0 - ,fjk),fj',k'+q 0 - ,fj'kl)i. (2)

where the collision integrals account only for electron-electron scattering. The Coulomb

matrix elements Mkj1 1  are given bykk'q aegvnb

2e2
11  

- f •dy f dy'Ko(qjy - Y' )Xjk(Y)Xj'k'(Y')Xjk±q(Y')Xjk-q(Y). (3)

Here K is the dielectric constant and KO is the modified Bessel function. In the one-
dimensional case the intrawire (j = J) part of the collision integral vanishes due to the
restriction q = k - k following from the energy conservation law in Eq. (2). The exchange
part (not written in Eq. (2)) vanishes for the same reasons.

It is convenient to write separately the distribution functions for the forward- and
backward-moving electrons as fjjkI = fjklk>o and fjk7 = fjklk<o, respectively. For
these functions the boundary conditions are given in the Landauer-Buttiker approach by
fj>k(-L/2) = f (8jk - e~vj-) and fj<k(L/2) = f (8jk - e~vj+), where 6vj± = vj± - v,

v is the equilibrium potential, ,f(e) = [e(E-ev)/T + 11-1, and T is the temperature. For
j = I and j = 2, Eq. (2) gives two coupled kinetic equations, whose solution allows
to express the unknown potentials vI- and vI+ through the fixed v2_ and v2+ values and
thereby calculate the BCD.
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2 Calculation of transresistance, results, and discussion

If most of the electrons move through the wires balistically, Eq. (2) can be solved by
simple iterations. The zero-order approximation gives fj1 k(X) = f(8jk - e•vj-) and
,fj'k(L/2) = f(8jk - evrj+). Substitution of these functions in the collision integral gives
non-zero contribution for the interwire collisions with backscattering. Taking into account
that vj- - vj+ is considerably smaller than v2- - V2+ due to the assumed weak Coulomb
coupling, we finally obtain, in the linear approximation

f'k(x) = f (81k - e6vI-) + (m1 /hk)X.> (k)e(v22- V2+)(x + L /2), (4)

f'k (x) = f(81k - e~vl+) + (mn1/hk))X<(k)e(v 2- V2+)(x - L/2), (5)

where Xý> (k) and Xý< (k) are determined by the Coulomb matrix elements and the equi-
librium distribution functions only. The current flowing in the drag wire is given by
ID = e/7r f dk(hk/m 1) [,fl'k (x) -,flfk (x) I (this current does not depend on x due to the prop-
erty f dk[Xý> (k) - Xý< (k) I = 0, which follows from detailed balance). The drag transresis-
tance is given by PD = - (v_ -- vi +)/I and the ballistic current I by I = (v2- - V2+)/Ro,

where RO = h/2e2 is the resistance quantum. From the requirement ID = 0 we obtain

PD - 4e 2T dk2 dkkq 8,f(1k),f(82k0)[1 - ,f(81k)][ - f(82k2)]

x [ -fff-KO(qkk'lYI - Y2 + y - y'l)Ql (k, ki, Y)Q 2(-k, -k 2 , Y)]• (6)

Here qkk' = mo(k/ml + k'/m 2), k1 = k' + rq(k' - k), k2 = k + rl(k - k), Qj(p, p', y) =

exp{-[(y - (./oj)fp)2 + (y + ((wc/(0j)fýp') 2j/2Zg}, mo = 2m1m2/(ml + m2) and
17 = (mI - m2)/(ml + m2).

Below we analyze in detail the case when the confining potentials are identical in both
wires; this entails ml = M2, f = f2 = f, Q1 = Q2 = Q, and wo = 0o2 = 0o. We
also assume that both the temperature T and splitting energy A = -0 _ e0 are small in

comparison with the Fermi energy sF defined as 8F = ev - (eoI+ -'2°)/2 - hwo/2. These
assumptions mean that the k and k' values contributing to the integrals are in narrow regions
near 12moe/h, and the integrals over k and k' are calculated easily. We obtain

e 2m3 / 2 o3 LT (A/3T) 2  ( 8w2F
PD e )L A2 exp 80)-8F

2Dý2V/rjh2K2Q383/2 sinh 2 (A/2T) rjoW2

x due-e2 /2Ko ( 8W8F/hQr
2 Iw/ + uI , (7)

where w = Y1 - Y21 is the distance between the centers of the wires and u a dimensionless
variable. Equation (7) demonstrates a significant suppression of the drag effect by the
magnetic field, mostly due to the exponential factor and the increase, with H, of the
argument of K0 . The decrease of PD starts as pD(H) - PD(O) - -H 2 and becomes
exponential with increasing H. The characteristic H for this suppression is determined

by the Fermi energy and wire parameters. It is estimated as H = (mc/e)h hQ13/8,F and
is of the order of I T for typical wire parameters. Another less important factor, which
contributes to the magnetic-field dependence of the BCD transresistance is the dependence
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Fig. 1. Dependence of the transresistance PD on the magnetic field H at two different Fermi
energies EF(0) = 3 meV (solid) and 8F(1) = 4 meV (dashed). The two upper curves correspond
to w = 40 nm and the two lower ones to w = 45 nm.

of 8F on H. It is taken below as 8F(H) - e,(0) = -h(wo - Q)/2, under the assumption
that v is constant.

In Fig. I we show the field dependence of PD (in units of h/2e2) for the resonance
condition A = 0 for which the drag is maximal I ]. The curves are plotted for two
different values of 8F (0) and w shown in the caption. The other parameters used, common
to all curves, are hQ = 5 meV, T = I K, m = 0.067 of the free electron mass, K = 13,
and L = 0.5 pm. Although the variations of both 8 b and w considerably modify PD, they
do not influence the field dependence qualitatively.

In summary, we have theoretically demonstrated the magnetic-field induced suppres-
sion of the drag effect between two quantum wires in the ballistic transport regime. This
suppression results from that of backscattering in the interwire Coulomb collision processes
and is significant at H - I T. We hope that these results will stimulate further experimental
investigations of electron transport in double-quantum-wire systems.
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